**Amplification Cutoff Validation** 

# **Amplification Cut-Off Validation**

Plexor® HY AmpFISTR® Identifiler® Plus

| Report                                                          |              |
|-----------------------------------------------------------------|--------------|
| Appendix A (Excel Spreadsheets)                                 |              |
| Appendix B (Sensitivity Study Setup Worksheets, Results, Electr | opherograms) |
| Appendix C (Casework Evaluation Intern Study Data)              |              |
| Appendix D (Mixture Study Setup Worksheets, Results, Electrop   | oherograms)  |
|                                                                 |              |
|                                                                 |              |
|                                                                 |              |
| This study has been technically reviewed and approved for use   | by:          |
| Lusan E Welt                                                    | 012216       |
| Susan Welti, Technical Leader                                   | Date         |
|                                                                 |              |
|                                                                 |              |
| This study was conducted and written by:                        |              |
| 205800-Al-                                                      | 011216       |
| Jessica Skillman , Forensic Scientist III                       | Date         |

# Internal Validation of Amplification Cut-off

#### Introduction

In order to keep up with the increasing demand for DNA testing in the District of Columbia, the Department of Forensic Sciences Forensic Biology Unit is investigating the use of an amplification cut-off as a part of the DNA analysis procedure. This method will allow the laboratory to confidently reduce the time and cost of processing samples which are not likely to produce useable results. The following validation will determine an appropriate overall value to stop sample processing after the quantitation step and an appropriate ratio to stop sample processing of qualifying sexual assault case samples. It includes a casework evaluation of previously quantified and amplified samples, a sensitivity study and a mixture study. The following SWGDAM requirements will be addressed: mock case samples, sensitivity, accuracy, reproducibility, contamination and mixture. Studies on precision were performed as a part of the Plexor® and Identifiler® Plus Validation.

#### I. Casework Evaluation

a. Objective

Use previously amplified samples to determine an appropriate amplification cutoff using Quantifiler® Duo and Identifiler®/Identifiler® Plus.

#### b. Materials and Methods

Previously worked cases which included samples quantified at a value of 0.04ng/ $\mu$ l or less were pulled for evaluation. 469 samples from 98 cases quantified with Quantifiler® Duo and amplified with Identifiler® or Identifiler® Plus for 28 cycles were examined and evaluated. 47 samples from 16 cases quantified with Quantifiler® Duo and amplified with Identifiler® Plus for 29 cycles were examined and evaluated. Data was also collected from two sets of low level mock casework samples which were quantified with Quantifiler® Duo and amplified with Identifiler® Plus as a part of two previous internship studies. In total, data was gathered from 583 samples for this study.

#### c. Data Analysis

An excel spreadsheet was generated to record the following information: sample, quantification value, Ct, amplification target, number of cycles, and IPC value. Electropherograms from each sample were then evaluated as mixture or single source (if able to be determined) and the number of loci, excluding amelogenin, which produced any result was recorded. Peak heights, peak height ratios and loci with a single peak below stochastic threshold were also recorded. Samples with results at 10-15 loci were colored green, 5-9 loci were colored yellow and 0-4 loci were colored red. The spreadsheet was then sorted by amplification target to determine if there was an observable trend. (See Appendix A for spreadsheet.)

# d. Results28 Cycle Amplifications

| Amplified Quantity | % 10-15 loci | % 5-9 loci  | % 0-4 loci  |
|--------------------|--------------|-------------|-------------|
| >400pg             | 100          | 0           | 0           |
| 350-400pg          | 41.66666667  | 25          | 33.33333333 |
| 300-350pg          | 51.61290323  | 9.677419355 | 38.70967742 |
| 250-300pg          | 36           | 16          | 48          |
| 200-250pg          | 45.45454545  | 24.24242424 | 30.3030303  |
| 150-200pg          | 28.81355932  | 25.42372881 | 45.76271186 |
| 100-150pg          | 24.05063291  | 18.98734177 | 56.96202532 |
| 50-100pg           | 12.82051282  | 14.52991453 | 72.64957265 |
| 0-50pg             | 2.873563218  | 7.471264368 | 89.65517241 |

Figure 1.

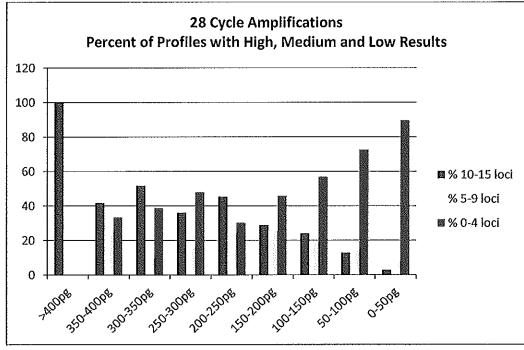



Figure 2. For the purposes of this study, samples with results at 10-15 loci will be considered good profiles, samples with results at 5-9 loci will be considered useable profiles and samples with results at 0-4 loci will be considered poor profiles. Good profiles were obtained for the majority of samples amplified at 200pg or more. More than 50% of the samples amplified at less than 200pg produced poor profiles, however good profiles were still obtained for some samples.

| Quantity Amplified | Average PH (rfu) | Standard deviation |
|--------------------|------------------|--------------------|
| >400pg             | 641.67           | 380.91             |
| 350-400pg          | 215.80           | 54.95              |
| 300-350pg          | 222              | 77.23988607        |
| 250-300pg          | 157.6            | 66.87525701        |
| 200-250pg          | 194.9230769      | 93.28045663        |
| 150-200pg          | 175.5384615      | 107.3558067        |
| 100-150pg          | 139.9166667      | 50.66764396        |
| 50-100pg           | 127.7368421      | 49.59372956        |
| 0-50pg             | 123.2            | 53.93673543        |

Figure 3.

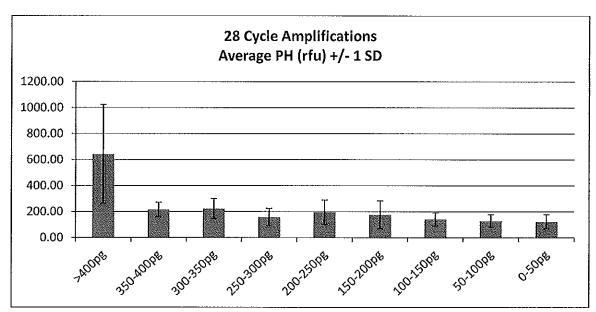



Figure 4. Average peak heights fall below stochastic threshold at 300pg, however all data was not able to be considered for calculations due to a high number of mixture profiles.

| Quantity Amplified | Average<br>Loci | standard<br>deviation | Average-2SD | Average+2SD | Range (+/- 2SD)            |
|--------------------|-----------------|-----------------------|-------------|-------------|----------------------------|
| >400pg             | 15.00           | 0.00                  | 15          | 15          | always full profile        |
| 350-400pg          | 8.86            | 6.29                  | -3.71528468 | 21.42957039 | no results to full profile |
| 300-350pg          | 7.69            | 5.65                  | -3.61272698 | 18.99203733 | no results to full profile |
| 250-300pg          | 6.52            | 6.15                  | -5.78338707 | 18.82338707 | no results to full profile |
| 200-250pg          | 8.67            | 5.54                  | -2.40883182 | 19.74216515 | no results to full profile |
| 150-200pg          | 6.07            | 5.13                  | -4.19001392 | 16.32560714 | no results to full profile |
| 100-150pg          | 5.30            | 5.28                  | -5.24695621 | 15.85455114 | no results to full profile |
| 50-100pg           | 3.13            | 4.24                  | -5.35520042 | 11.61161068 | no results to 12 loci      |
| 0-50pg             | 1.21            | 2.94                  | -4.65907198 | 7.084359332 | no results to 7 loci       |

Figure 5. Using +/- two standard deviations, good profiles may be obtained at target amplifications as low as 50pg. Below 50pg, profiles may be useable or poor.

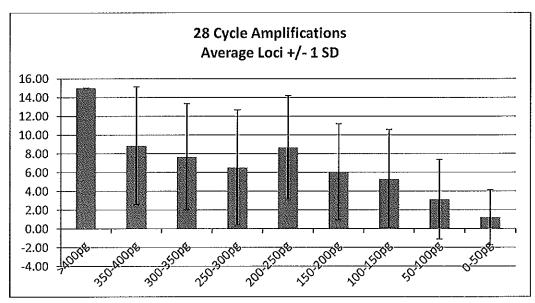



Figure 6.

# 29 Cycle Amplifications

| Amplified Quantity | % 10-15 loci | % 5-9 loci  | % 0-4 loci  |
|--------------------|--------------|-------------|-------------|
| 300-400pg          | 100          | 0           | 0           |
| 200-300pg          | 80           | 0           | 20          |
| 100-200pg          | 80           | 6.666666667 | 13.33333333 |
| 0-100pg            | 32           | 32          | 36          |

Figure 7.

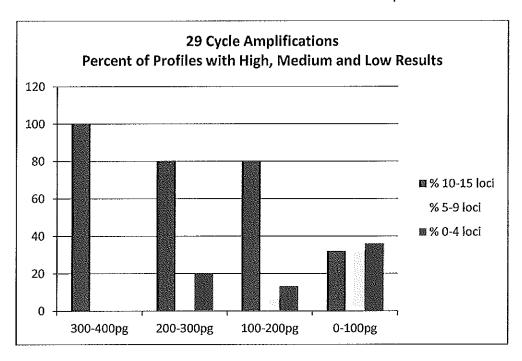



Figure 8. For samples amplified at greater than 100pg for 29 cycles, 80% or more of the profiles obtained were good (10-15 loci). For samples amplified at less than 100pg for 29 cycles, one-third of the profiles obtained were poor.

#### e. Conclusions

#### i. 28 Cycle Amplifications

Full profiles and profiles with no results were obtained from all quantities amplified below 400pg. At 200pg an overall shift from majority good profiles to majority poor profiles was observed. Average peak heights fall below stochastic threshold (200rfu) at less than 300pg. This is consistent with the Identifiler® Plus validation in which the minimum peak height of samples amplified with 250pg was 174rfu. High standard deviations in the number of loci obtained for each sample indicates that amplified quantities of 100-400pg may produce full profiles as low as 24% of the time. With two standard deviations, it can be expected for samples amplified with 50-100pg to produce profiles with anything from no results to 12 loci (with two standard deviations). Samples amplified with 0-50pg may produce profiles with no results or up to seven loci. Dropout was observed in samples amplified at 400pg or less. This is not consistent with the Identifiler® Plus validation in which dropout was not observed until the 125pg target, however may be attributable to the known differences between casework samples of unknown quality and high quality validation samples.

While the results of this study appear to produce somewhat consistent and expected averages, there are more than a few samples in each category of

**Amplification Cutoff Validation** 

amplification target which did not produce expected results. Many were shown to contain inhibition after amplification which was not indicated in the quantification procedure due to either the type or amount of inhibitor. Therefore, the actual concentrations of these samples as reported may not be accurate. Of the 18 samples which produced good and useable profiles, but quantified below 50pg, only six showed indications of inhibition.

An additional note should be included regarding the use of the Quantifiler Duo kit. It is not only important for a quantification kit to be consistent between lot numbers, but also between laboratory analysts. With Quantifiler Duo, as much as a two-fold difference can be expected in concentration values depending on analyst technique, kit lot, standard preparation date, etc. In addition, the value at which the quantification kit would be required to estimate is well below the sensitivity level established by internal validation. This may account for some of the high standard deviations obtained in this evaluation and the range of expected results from the different quantities. Therefore, it is recommended to investigate and/or internally validate a more accurate, sensitive quantification system in order to establish a reliable cutoff range for all samples prior to amplification.

#### i. 29 Cycle Amplifications

Samples amplified for an additional cycle produced more results at lower quantities than the 28 cycle amplifications. Improved profiles (greater number of loci with results) were observed for these samples. However, an increase in loci below stochastic threshold (300rfu) and a decrease in peak height ratios were also observed for these samples. This is consistent with the Identifiler® Plus validation and the expected effects of increasing cycle number.

Many of the samples evaluated for this study were previously amplified at 28 cycles and then amplified a second time with improved results at 29 cycles. Shortly after the 28 and 29 cycle validation of the Identifiler® Plus amplification kit, all 29 cycle amplifications were suspended. Therefore, a limited amount of 29 cycle samples were able to be assessed for this study. Additional data is needed to establish an appropriate amplification cut-off for a 29 cycle parameter.

# II. Amplification Sensitivity

#### a. Objective

Determine a level of quantification at which useful results cannot be obtained from amplification.

#### b. Materials and Methods

Six samples were quantified with Plexor® HY to determine an approximate concentration. Four samples were diluted to approximate concentrations of 0.0325ng/µl, 0.03 ng/µl, 0.0275 ng/µl, 0.025 ng/µl, 0.0225 ng/µl, 0.02 ng/µl, 0.0175 ng/µl, 0.015 ng/µl, 0.0125 ng/µl, 0.01 ng/µl, 0.0075 ng/µl, 0.005 ng/µl, and 0.0025 ng/µl. Each dilution was quantified in triplicate with Plexor® HY and 10µl amplified in triplicate with Identifiler® Plus.

An additional two samples were diluted to the following approximate concentrations: 0.0150ng/µl, 0.0125 ng/µl, 0.0100 ng/µl, 0.0075 ng/µl, 0.0050 ng/µl, 0.0025 ng/µl, 0.0025 ng/µl, 0.0015 ng/µl, 0.0010 ng/µl, 0.0005 ng/µl, 0.00025 ng/µl, 0.000125 ng/µl, and 0.0000625 ng/µl. Each dilution was quantified in triplicate with Plexor® HY and 10µl amplified in triplicate with Identifiler® Plus .

All samples were run on a 3130xl and analyzed using GeneMapper® ID-X v1.3 with a 70rfu analytical threshold. See Appendix B for setup and results worksheets and sample electropherograms.

#### c. Data Analysis

Quantitation results were exported and an average value calculated for each set of triplicate samples using a Microsoft Excel spreadsheet.

Electropherograms were printed and assessed visually. The number of loci with a single allele below 200rfu (excluding Amelogenin) were counted and recorded for each sample. These numbers were then averaged by Microsoft Excel for each set of triplicate samples.

Sample results were exported from GeneMapper® ID-X to a Microsoft Excel spreadsheet as a combined table. The number of loci with results (excluding Amelogenin) was counted and averaged by Microsoft Excel. Average peak heights for each sample were also calculated by Microsoft Excel with all homozygous alleles divided in half. The average peak heights and standard deviations were then calculated for each set of triplicates.

**Amplification Cutoff Validation** 

Each set of samples was sorted by sample name (dilution number) and results evaluated.

See sample set-up worksheets and electropherograms for information regarding samples not used for analysis and/or re-injections.

#### d. Results

All controls (positives and ladders) produced appropriate genotypes and negative controls (negatives and NTCs) produced no results. Concordance for samples was checked and accuracy was confirmed by visual examination in Microsoft Excel. No discordant genotypes were observed.

# **Amplification Cutoff Validation**

| 1                  | 1               |                                         |                       |              |                            |             | 1          |                |                     |              |
|--------------------|-----------------|-----------------------------------------|-----------------------|--------------|----------------------------|-------------|------------|----------------|---------------------|--------------|
|                    | Amp Target      | Average Number                          | Number of loct with   | Average Peak |                            |             | Amp Target | Average Number | Number of loci with | Average Peak |
| Sample Name        | (pg)            | ofLoci                                  | one allele <200 rfu   | Height       |                            | Sample Name | (pg)       | ofLoci         | one allele <200rfu  | Height       |
| 1-6A               | 366,649874      | 16                                      | 0                     | 272.75       |                            | BUCCALD-5A  | 283,201399 | 16             | . 0                 | 258.875      |
| 1-68               | 324.043682      | 16                                      | ō                     | 264.34375    | - 1                        | BUCCALD-5B  | 252.223189 | 10             | 0                   |              |
| 1-6C               | 415.148407      | 195                                     | 0                     | 276.2708333  | Ì                          | BUCCALD-SC  | 259.255094 | 10             | 0                   |              |
| 1-6D               | 319.847866      | 16                                      | ,                     | 214.875      | 1                          | BUCCALD-5D  | 173.237287 | 16             | 0,333333333         | 167,6875     |
| 1-6E               | 255.250342      | 10                                      | 0                     | 206.1354167  | ı                          | BUCCALD-5E  | 168.972526 | 15             | 0                   |              |
| 1-6F               | 219.520984      | 416                                     | 0                     | 214.46875    | Ì                          | BUCCALD-5F  | 169.835912 | 15             | 1.333333333         | 156.6875     |
| 1-6G               | 220.138919      | 315                                     | 1,333333333           | 151.6770833  | 1                          | BUCCALD-5G  | 118,382053 | 10             | 2                   | 147.5104167  |
| 1-6H               | 187.742743      | is is                                   | 1                     | 148.171875   | ı                          | BUCCALD-SH  | 109.587292 | 16             | 4                   |              |
| 1-61               | 157.132701      | 9000000000                              | 5.333333333           | 124.4513889  | İ                          | BUCCALD-51  | 97.0770431 | 19             | 5.5                 | 104.8461538  |
| 1-63               | 142.376788      | 102050005504                            | 3,333333333           | 121.9761905  | ĺ                          | BUCCALD-51  | 81.2762574 | jų.            | 1                   | 96.10378788  |
| 1-6K               | 121.371013      | 111                                     | 6,666566667           | 102.3873626  | 1                          | BUCCALD-5K  | 89,3643767 | 1916           | 7                   | 101,1666667  |
| 1-61               | /0.0865313      | 5.666666667                             | 3,666666667           | 99,44907407  | İ                          | BUCCALD-51  | 37,2990883 | 20111111111    | 2.333333333         | 65.77777778  |
| 1-6M               | 49.8135035      | 1,028516800                             | 1,333333333           | 88.66666667  |                            | BUCCALD-5M  | 29,1873399 |                | 1                   | 53.16666667  |
| 2-10A              | 58.313688       | 910                                     | 2                     | 147.4479167  | ľ                          | Q11B        | 78.7751005 | 15             | 1                   | 105.4996947  |
| 2-10B              | 53.7794914      | 16                                      | 3.333333333           | 120.9270833  | į                          | Q11C        | 71.8390004 | arkendedő.     | 4,333333333         | 166.2604167  |
| 2-10C              | 38.8022817      | 10.00309830                             | 7.666666667           | 105.0833333  | 1                          | Q11A*       | 55,4697961 | (18)66066887   | 8                   | 122,1902778  |
| 2-10D              | 24.4795604      | 8.333333333                             | 6                     | 83,95416667  | İ                          | Q11D        | 45.8691745 | 14/66/65/65    | 7                   | 106.5617716  |
| 2-10E              | 24.1961331      | 5.333333333                             | 5,333333333           | 68.11616162  | ı                          | QIIE        | 30.0394478 | 9,666666667    | 7.666666667         | 89.49768519  |
| 2-10F              | 11.513232       | 200000000                               | 2.666666667           | 79.41656667  | 1                          | QI1F        | 15.8646065 |                | 0.666666667         | 82.625       |
| 2-10G              | 7.42618437      | e                                       | 0                     | С            | Ì                          | Q11G        | 14,685824  | 0186000000000  | 1,333333333         | 81.16666667  |
| 2-10H              | 5.12462142      | 0.0001000000                            | 0,333333333           | 37.5         | T I                        | Q11H        | 15.5698205 | Ú              | 0                   | 0            |
| 2-10               | 5.84062537      | 0                                       | 0                     | О            | İ                          | Q11I        | 8.72084917 | 0              | 0                   | 0            |
| 2-10J              | 2.21459088      | ij                                      | 0                     | 0            |                            | 0111        | 2.39408808 | 0              | 0                   | 0            |
| 2-10K              | 0.72726867      | 0                                       | 0                     | 0            | ı                          | Q11K        | 2.38035659 | 0              | 0                   | 0            |
| 2-10L              | 0               | ū                                       | 0                     | 0            | İ                          | Q11L        | 0.88338406 | 0)             | 0                   | 0            |
| 2-1034             | 0.38666316      | ŋ                                       | 0                     | 0            | İ                          | Q11M        | 0          | 0)             | 0                   | 0            |
| 5-37A              | 313.139493      | 10.00000000                             | 2.333333333           | 134.0952381  | 1                          | Q15A        | 248.170005 | 1.             | 0                   | 295.34375    |
| 5-37B              | 273.045008      | and the second second                   | 2.333333333           | 140.7916667  | · · ·                      | Q15B        | 231.210365 | I.             | 0                   | 264.0416667  |
| 5-37C              | 277.988565      | 16                                      | 3,333333333           | 126.0520833  |                            | Q15C        | 196.099678 | 10             | 0.333333333         | 218,03125    |
| 5-37D              | 242.64769       | 110000000000000000000000000000000000000 | 5.666666667           | 112,8456731  | Ī                          | Q15D        | 110.212329 | 15             | 0                   | 234.3333333  |
| 5-37E              | 210.176502      | 493                                     | 5.333333333           | 106,7364268  | İ                          | Q15E        | 132.146985 | 1.             | 0.333333333         | 191.25       |
| 5-37F              | 207.009343      | 10                                      | 5                     | 104.463955   | · [                        | Q15F        | 120.622595 | 15             | 0.666666667         | 187.375      |
| 5-37G              | 165,581124      | in.                                     | 7                     | 95,89393939  | · · · · · · · · <b>· i</b> | Q15G        | 125.728726 | 18             | 2.333333333         | 138.96875    |
| 5-37H              | 191.482024      | 5.666666667                             | 3.666666667           | 91,91944444  | ı                          | Q15H        | 141,228152 | 18160686667    | 3.333333333         | 136.0194444  |
| 5-371              | 134.901204      | 6                                       | 4                     | 87.85714286  |                            | Q15I        | 83.785145  | A Medicalisa   | 6.66666667          | 101.2261905  |
| 5-37J              | 126.578109      | 2.000000000                             | 2.666666667           | 82.31111111  |                            | Q15J        | 43.2618088 | 401003311993   | 7                   | 114.3854167  |
| 5-37K              | 118.324563      | 0.0000000007                            | 3,333333333           | 100.5416667  | · · ·                      | Q15K        | 60.394929  | 1003389389     | 7.666666667         | 85.40873016  |
| 5-37L              | 85.4559293      | 0000000000                              | 0.666666667           | 92.5         | İ                          | Q15L        | 44.2472521 | 8              | 7                   | 74.72857143  |
| 5-37M              | 59.3675662      | 0                                       | 0                     | 0            | Ī                          | Q15M        | 14.5730492 | 9,466,665,69   | 0.666666667         | 83.5         |
| * - dilution 6 pre | nared incorrect | wand actually hal                       | longs between dilutio | n Cand D     |                            |             | ì          |                |                     |              |
|                    | 5               | 5                                       |                       |              |                            |             | **         | ĺ              |                     |              |
| 55.57550217        | z pg            | Average Amp Tar                         | get cut-off           |              | i                          |             | į          |                |                     | 1            |
|                    | 1920            |                                         | 2                     |              | ļ                          |             | 1          |                |                     | }            |
|                    | 10-15 loci      |                                         |                       |              | j                          |             |            |                | i<br>               | {            |
|                    | 5-9 loc1        |                                         |                       |              | · į                        |             | 1          |                |                     |              |
|                    | <b>33</b>       | 1                                       |                       |              | i                          |             | 1          | -              | j                   | ,<br>,       |
|                    | 0-4 loc1        | l                                       | L                     |              |                            |             |            |                |                     |              |
|                    | ∑,50% of loct b | elow stochastic th                      | nreshold              | i            |                            |             |            | į              |                     |              |
| 100                | ampquantity     | at which results o                      | hange from high to me | edium/poor   | į                          |             | *          |                |                     |              |

Figure 8. Compiled results from all samples sorted by sample name. Each sample began to show signs of dropout at different levels. The overall average of the amplification targets at which high results profiles became medium/poor results profiles was 56pg.

| Amplification Target | % 10-15 loci | % 5-9 loci | % 0-4 loci |
|----------------------|--------------|------------|------------|
| >400                 | 100          | 0          | 0          |
| 350-400              | 100          | 0          | 0          |
| 300-350              | 100          | 0          | 0          |
| 250-300              | 100          | 0          | 0          |
| 200-250              | 100          | 0          | 0          |
| 150-200              | 100          | 0          | 0          |
| 100-150              | 69.2307692   | 15.38462   | 15.38462   |
| 50-100               | 76.9230769   | 7.692308   | 15.38462   |
| 0-50                 | 14.8148148   | 11.11111   | 74.07407   |

Figure 9.

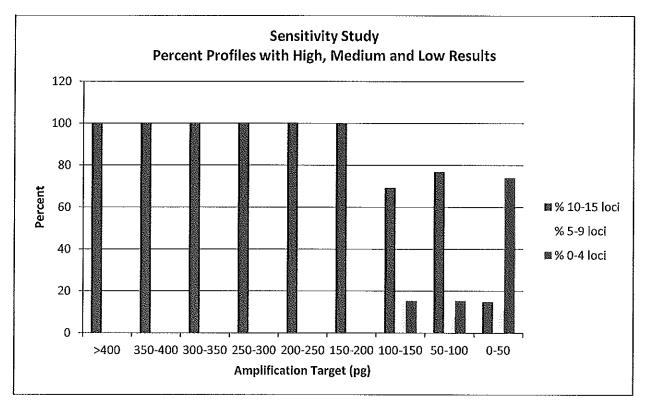



Figure 10. The majority of samples produced good profiles if amplified at more than 50pg. At 50pg or less, the majority of samples produced poor profiles. This is a lower quantity than was observed in the Casework Study.

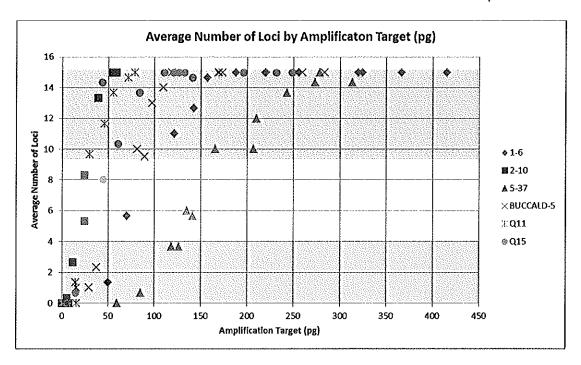



Figure 11. The red, yellow and green areas on the graph correspond to good, useable, and poor results profiles. Sample 5-37 produced fewer results for each amplification target than any of the other samples. All other samples produced good results until the 50-100pg range.

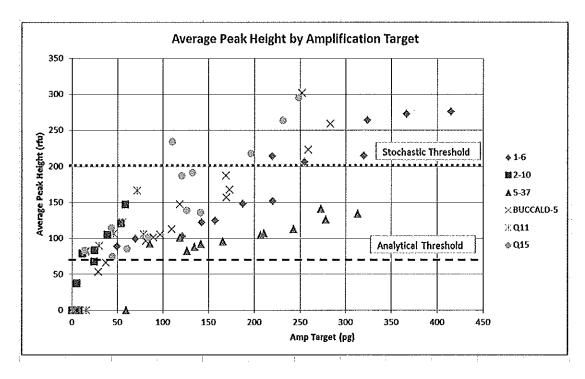



Figure 12. The majority of samples amplified under 300pg produced peak heights in the range between the laboratory's currently validated stochastic and analytical thresholds. Sample 5-37 produced lower overall peak heights than all other samples.

**Amplification Cutoff Validation** 

#### e. Conclusions

The previous study recommended a change in quantitation kit in order to appropriately establish a reliable amplification cutoff. Please refer to the Plexor® HY validation for verification of a quantitation kit capable of detecting DNA extract concentration down to a level of  $0.865 pg/\mu l$  with reproducible values obtained to a level of  $2pg/\mu l$ . These values are less than the suggested amplification cutoff below.

In comparison to the casework portion of this validation, approximately 50pg was obtained for the shift from good to medium results profiles. If sample 5-37 is not included in this calculation, a value of approximately 40pg is obtained. This is a much lower quantity when compared to the casework quantity (using Quantifiler Duo), however it is consistent with the expected effect of switching quantitation kits to Plexor HY demonstrated in the Accuracy Study of the validation. In this study, the NIST standard samples and non-probative samples generally quantified lower using the Plexor® HY kit than the Quantifiler® Duo kit. It is also expected that single source samples would show better results at lower template amounts than the casework study samples which included single source and mixture profiles.

In order to determine an appropriate minimum quantity for samples to be amplified, it is important to include the expected variability (three standard deviations) of quantitation values at the calculated average amplification cutoff, 55.58pg. This value will be based on results from the Reproducibility/Sensitivity Study of the Plexor® HY Validation. The standard deviation is calculated from the average quantities and standard deviations obtained from two sets of dilutions quantified in triplicate on one plate and again by another analyst on a second plate. Using a best fit line, the average amplification cutoff value obtained from this validation, 55.58pg, can be expected to have a standard deviation of 4.859. Three standard deviations less, results in a 41pg minimum for amplification. This will be the recommended minimum value for samples to be amplified.

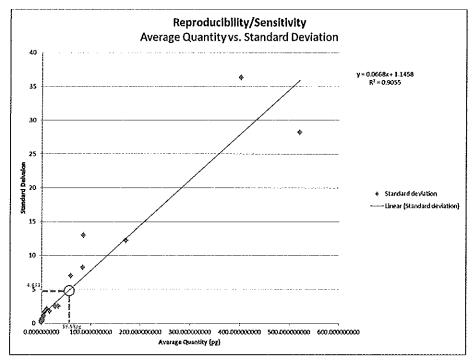



Figure 13.

In comparison to the Identifiler® Plus validation, this study produced similar values for peak heights and allelic dropout. The original validation showed initial dropout occurring at approximately 125pg and the samples of this study showed dropout at the following amplification targets: 157pg, 39pg, 313pg, 110pg, 72pg, and 141pg. The average of these values is 139pg. If sample 5-37 is not included in this calculation, the average is 104pg.

It is important to note that while samples amplified above the amplification cutoff may be expected to produce some dropout, low peak heights and peak height ratios, the laboratory has validated new probabilistic genotyping software, STRmix™. This software is able to model for the possibility of dropout and increased peak height variability for low level samples within its deconvolutions and statistical calculations.

#### III. Mixture

#### a. Objective

Determine a ratio of Total DNA to Male DNA at which no useable minor profile is detected.

#### b. Materials and Methods

Four male and four female samples were quantified with Plexor® HY to determine an approximate concentration. Samples were chosen in order to maximize the number of loci without shared alleles. Mixtures were made at total to male DNA ratios of 7:1, 10:1, 15:1, 20:1, and 25:1 with target concentrations of 0.5 ng/ $\mu$ l, 1 ng/ $\mu$ l, 5 ng/ $\mu$ l, 10 ng/ $\mu$ l and 15 ng/ $\mu$ l. Each sample was quantified in triplicate with Plexor® HY. Mixture A was prepared and amplified in triplicate with a 1 ng target in Identifiler® Plus. Peak heights were determined to be lower than expected for this mixture. Mixtures B, C and D were amplified at a 2 ng target in Identifiler® Plus.

All samples were run on a 3130xl and analyzed using GeneMapper® ID-X v1.4 with a 70rfu analytical threshold. See Appendix D for setup and results worksheets and sample electropherograms.

#### c. Data Analysis

In order to prepare the mixtures, each sample (Male A, Male B, Male C, Male D, Female A, Female B, Female C, Female D) was quantified and then mixtures were calculated using a Microsoft Excel spreadsheet.

Each mixture was then prepared and quantified in triplicate using Plexor HY. Quantification results were evaluated in the Plexor Analysis Software to confirm standard curve and control values. Mixture sample results were then exported and an average value was calculated for each set of triplicate samples using a Microsoft Excel spreadsheet. The data was then sorted and an average value was calculated for each prepared ratio (7:1, 10:1, 15:1, 20:1, 25:1).

Each mixture was also amplified in triplicate using Identifiler Plus and run on the 3130xl Genetic Analyzer. Results were analyzed in GeneMapper® ID-X Version 1.4 and evaluated. Appropriate profiles for controls were verified and artifacts (spikes, background, pull up, etc.) were identified and removed.

Mixture sample results were then exported from GeneMapper® ID-X to a Microsoft Excel spreadsheet as a combined table. The number of detected alleles (excluding

Amelogenin) was counted and subtracted from the expected number of alleles to determine dropout. Average dropout was then calculated for each mixture ratio. The average ratio of total DNA to male DNA for each mixture was also calculated using the peak heights of loci where no alleles were shared. The sample ratios were then averaged to determine an overall total DNA to male DNA ratio for each mixture.

See sample set-up worksheets and electropherograms for information regarding samples not used for analysis and/or re-injections.

#### d. Results

#### i. Quantitation

|                   |                  | A                         |                       | В                         |                       | С                         |                       | D                         |                       |
|-------------------|------------------|---------------------------|-----------------------|---------------------------|-----------------------|---------------------------|-----------------------|---------------------------|-----------------------|
| Expected<br>Ratio | Quantity<br>(ng) | Mix A<br>Average<br>Ratio | Standard<br>Deviation | Mix B<br>Average<br>Ratio | Standard<br>Deviation | Mix C<br>Average<br>Ratio | Standard<br>Deviation | Mix D<br>Average<br>Ratio | Standard<br>Deviation |
|                   | 0.5              | 14.96896                  | 3.68815               | 16.0605                   | 0.816139              | 10.88155                  | 0.310886              | 11.60872                  | 1.107261              |
|                   | 1                | 23.18088                  | 0.922037              | 24.46753                  | 9.402203              | 8.766756                  | 0.814378              | 12,1162                   | 0.526778              |
|                   | 5                | 18.83539                  | 1.401104              | 12.62823                  | 0.869679              | 8.057176                  | 0.218555              | 10.78982                  | 1.915571              |
|                   | 10               | 22.18867                  | 2.61669               | 12.59378                  | 1.263306              | 6.951642                  | 0.072299              | 8.930957                  | 0.962918              |
| 7                 | 15               | 22.32287                  | 1.719082              | 14.76271                  | 2.453497              | 6.676053                  | 0.495368              | 10.53033                  | 0.137283              |
|                   | 0.5              | 23.95102                  | 1.226619              | 23.58558                  | 1.492098              | 17.18752                  | 2.670017              | 17.74401                  | 0.351918              |
|                   | 1                | 31.70781                  | 1.198737              | 19.52476                  | 4.961417              | 15.70213                  | 1.977166              | 18.55011                  | 1.883349              |
|                   | 5                | 31.09398                  | 1.293373              | 21.02884                  | 0.88041               | 14.06673                  | 1.100361              | 19.08914                  | 1.044491              |
|                   | 10               | 31.01452                  | 2.410064              | 19.69336                  | 1.505415              | 12.40175                  | 0.866895              | 11.97475                  | 0.490799              |
| 10                | 15               | 38.27938                  | 1.115146              | 20.46776                  | 2.663712              | 10.11372                  | 0.64927               | 16.04292                  | 2.827302              |
|                   | 0.5              | 40.96884                  | 6.536695              | 37.83552                  | 7.104782              | 22.23731                  | 2.977805              | 25.83018                  | 6.672995              |
|                   | 1                | 53.87513                  | 7.375943              | 34.48286                  | 10.62953              | 23.97139                  | 3.956519              | 27.20018                  | 5.042903              |
|                   | 5                | 56.28943                  | 5.996079              | 31.90343                  | 1.68775               | 24.6976                   | 1.64568               | 33.25591                  | 4.123558              |
|                   | 10               | 59.95287                  | 3.966677              | 33.0867                   | 1.657389              | 24.34259                  | 4.516805              | 24.62166                  | 3.894013              |
| 15                | 15               | 62.63766                  | 13.6609               | 35.64256                  | 8.485626              | 21.61498                  | 3.044649              | 28.72323                  | 2.710584              |
|                   | 0.5              | 52.51915                  | 14.72206              | 40.13367                  | 6.060236              | 38.48264                  | 10.26107              | 35.81665                  | 4.717465              |
|                   | 1                | 66.22263                  | 8.840219              | 53.75912                  | 13.29867              | 31.75989                  | 5.478223              | 41.94905                  | 5.109899              |
|                   | 5                | 69.85034                  | 12.46631              | 51.2805                   | 1.76985               | 33.28636                  | 1.72853               | 37.2845                   | 1.464143              |
|                   | 10               | 77.92514                  | 8.240042              | 57.28258                  | 7.546687              | 34.08308                  | 1.191325              | 36.37494                  | 4.534351              |
| 20                | 15               | 93.72321                  | 25.94596              | 50.58193                  | 5.446491              | 39.73839                  | 6.023768              | 38.81672                  | 1.316815              |
|                   | 0.5              | 60.77257                  | 9.1372                | 58.47198                  | 7.79773               | 45.18467                  | 4.719161              | 43.72024                  | 8.20466               |
|                   | 1                | 79.82771                  | 17.38111              | 65.35989                  | 5.685596              | 41.3839                   | 2.487526              | 50.0142                   | 5.627141              |
|                   | 5                | 92.05865                  | 6.105572              | 60.6588                   | 3.804194              | 39.58662                  | 0.90633               | 54.15574                  | 4.168319              |
|                   | 10               | 92.06361                  | 14.50873              | 70.43411                  | 14.40373              | 43.8675                   | 6.947279              | 44.24204                  | 6.745869              |
| 25                | 15               | 107.0107                  | 32.20182              | 76.0654                   | 22.98109              |                           |                       | 42.26951                  | 2.889269              |

Figure 14. This table shows the average ratio determined by quantitation for each target ratio at the 5 different input quantities. An overall trend of higher than expected ratios was observed for all mixtures at all quantities.



Figure 15. For Mixture A, the average ratio increased with an increase in the amount of DNA added to the quantitation. However, no other mixtures displayed this same trend. Mixtures B, C and D produced consistent ratios despite quantity.

|                   | Mixture A                    |                       | Mixture B                    | Mixture B             |                              | Mixture C             |                              | Mixture D             |                              |  |
|-------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|--|
| Expected<br>Ratio | Average<br>Observed<br>Ratio | Standard<br>Deviation | Average<br>Observed<br>Ratio | Standard<br>Deviation | Average<br>Observed<br>Ratio | Standard<br>Deviation | Average<br>Observed<br>Ratio | Standard<br>Deviation | Average<br>Observed<br>Ratio |  |
| 7:1               | 20.29935406                  | 3.7033466             | 16.10254917                  | 5.875708062           | 8.266635213                  | 1.609996855           | 10.79520717                  | 1.466175121           | 13.8659364                   |  |
| 10:1              | 31.20934151                  | 4.871474417           | 20.86005985                  | 2.754511319           | 13.89436926                  | 2.913456466           | 16.68018528                  | 2.987215415           | 20.66098898                  |  |
| 15:1              | 54.74478577                  | 10.41257113           | 34.59021142                  | 6.242270815           | 23.3727739                   | 3.117938224           | 27.9262313                   | 5.025595519           | 35.15850059                  |  |
| 20:1              | 72.04809545                  | 19.1912652            | 50.6075591                   | 8.866441241           | 35.4700718                   | 5.947642544           | 38.04837472                  | 3.947128533           | 49.04352527                  |  |
| 25:1              | 86.34664187                  | 22.21194603           | 66.19803563                  | 12.8328834            | 42.5056723                   | 4.385111568           | 46.88034637                  | 6.77863529            | 60.48267404                  |  |

Figure 16. This table calculates an overall observed ratio for each mixture. This calculation is appropriate since the previous data demonstrated no affect by the total input quantity for Mixtures B, C and D.

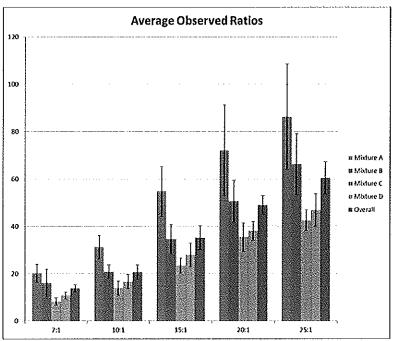



Figure 17. This figure shows an overall trend of higher than expected ratios. In order to determine whether this trend is due to the quantification process or a poor initial quant value obtained prior to dilution, all samples were amplified and mixture ratios calculated.

# ii. Amplification

Average Number of Missing Alleles

| AVCIASC IV | Average transfer of thissing Arreles |                 |                 |                 |                   |  |  |  |  |  |  |
|------------|--------------------------------------|-----------------|-----------------|-----------------|-------------------|--|--|--|--|--|--|
| Expected   |                                      |                 |                 |                 | Average (excludes |  |  |  |  |  |  |
| Ratio      | Mixture A (1ng)                      | Mixture B (2ng) | Mixture C (2ng) | Mixture D (2ng) | Mixture A)        |  |  |  |  |  |  |
| 7:1        | 6.2                                  | 0.133333333     | 0               | 0.466666667     | 0.2               |  |  |  |  |  |  |
| 10:1       | 12.53333333                          | 2               | 0.4             | 1.533333333     | 1.311111111       |  |  |  |  |  |  |
| 15:1       | 17.06666667                          | 5.466666667     | 4               | 4.333333333     | 4.6               |  |  |  |  |  |  |
| 20:1       | 20.13333333                          | 10.2            | 6.076923077     | 7.066666667     | 7.781196581       |  |  |  |  |  |  |
| 25:1       | 21.46666667                          | 12.53333333     | 9.25            | 11.26666667     | 11.01666667       |  |  |  |  |  |  |

Figure 18. This table shows the average amount of dropout for Mixtures B, C and D. Due to a lower than ideal target input of 1ng, data from Mixture A will not be used for calculations in the amplification portion of the Mixture Study. Little to no dropout was observed in the 7:1 and 10:1 ratios. An average of five alleles was observed to dropout at the 15:1 ratio. Dropout in the 20:1 and 25:1 ratios indicates approximately half of the minor component missing (data does not include alleles which are shared by both contributors).

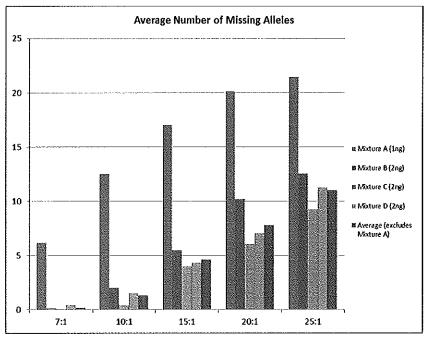



Figure 19. Similar values were obtained for Mixtures B, C and D. For Mixture A which was amplified at a lower input, a higher than expected number of missing alleles was obtained.

Average Male Heterozygote Peak Height

|          | ale Heterozigote |                 |                 |                 |                     |
|----------|------------------|-----------------|-----------------|-----------------|---------------------|
| Expected |                  |                 |                 |                 | Overall Average     |
| Ratio    | Mixture A (1ng)  | Mixture B (2ng) | Mixture C (2ng) | Mixture D (2ng) | (without Mixture A) |
| 7        | 117.8693182      | 180.5298507     | 290.99          | 246.9179688     | 239.4792732         |
| 10       | 95.03191489      | 134.9188034     | 224.0472973     | 169.8628319     | 176.2763109         |
| 15       | 75.20454545      | 103.2682927     | 173.6008772     | 131.8352941     | 136.2348213         |
| 20       | 75.45            | 71.04385965     | 150.8571429     | 97.64583333     | 106.5156119         |
| 25       | 58.1             | 58.29268293     | 128.3365385     | 69.46875        | 85.36599046         |

Figure 20. All mixtures produced average male peak heights above 70rfu down to a 20:1 mixture ratio.

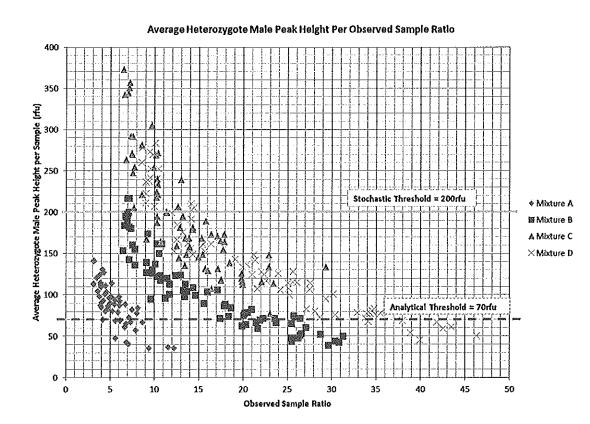



Figure 21. For this graph, average male peak heights for each sample were compared to the calculated overall ratio for each sample. Without considering Mixture A, the average male peak heights are above analytical threshold until the 20:1 ratio. The stochastic threshold line indicates that the majority of average peak heights are below stochastic threshold for all samples, however, some samples with ratios as low as 15:1 produced averages above 200rfu.

# Average Total/Male per Ratio

|          |             |             |             |             | Overall Average |           |
|----------|-------------|-------------|-------------|-------------|-----------------|-----------|
| Expected | Mixture A   | Mixture B   | Mixture C   | Mixture D   | (without        | Standard  |
| Ratio    | (1ng)       | (2ng)       | (2ng)       | (2ng)       | Mixture A)      | Deviation |
| 7        | 3.936363596 | 7.103850459 | 7.424123349 | 9.5528848   | 8.026952869     | 1.331163  |
| 10       | 4.799832909 | 10.25822291 | 10.33254617 | 13.83801393 | 11.476261       | 2.0456756 |
| 15       | 6.793854932 | 14.49337759 | 13.73492323 | 21.95130527 | 16.72653536     | 4.5406474 |
| 20       | 6.452582384 | 21.47339957 | 17.21449342 | 29.43031169 | 22.70606823     | 6.2004966 |
| 25       | 8.871301291 | 26.47247711 | 21.01089224 | 36.44126951 | 27.97487962     | 7.8241323 |

Figure 22. Mixture A was not used for calculation of the average or standard deviation of the total/male per ratio. While Mixture D produced higher than expected ratios, all averages for Mixtures B, C and D fall within two standard deviations of the expected ratio. If a sample is amplified at a lower than ideal target (Mixture A), the calculated mixture ratio will be significantly lower than actually present.

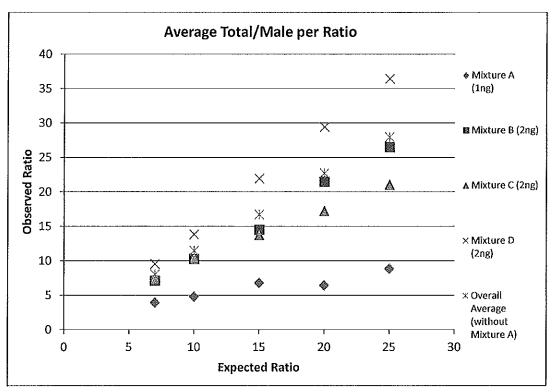



Figure 23. This graph demonstrates the stochastic effect of a mixture amplified at a lower than ideal target. Mixture A produced much lower ratios than expected, while Mixtures B, C and D produced mixtures which are similar to the expected. However, as the mixture ratio increases, more variability can be expected in the observed ratio.

#### e. Conclusions

Based on the results of the Mixture Study, significant dropout of the minor contributor can be expected to occur at amplification ratios of 25:1 or greater when a sufficient quantity of DNA is available for amplification. Due to the quantification process, the graph below shows an approximate two-fold difference between the estimated ratio of total to male DNA predicted by the quantification results and amplification results. Therefore, an appropriate amplification cutoff ratio for samples which are expected to have only two contributors with the majority from a female is a 45:1 ratio.

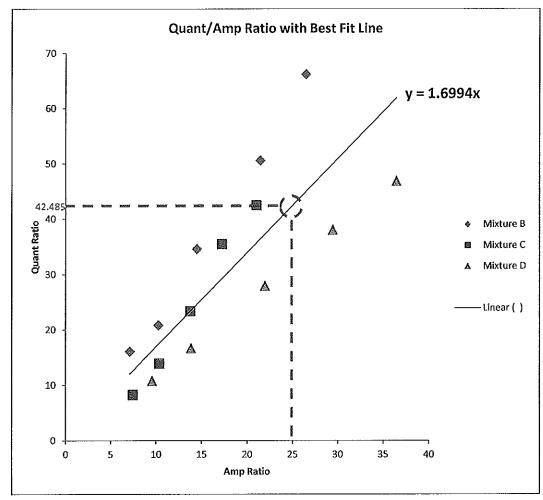



Figure 24.

While Mixtures B, C and D were used for all calculations, the results from Mixture A should still be considered when making decisions about samples which are to be amplified. If a mixture sample will not reach an appropriate target input, the expected number of missing alleles will be higher than expected. In addition, the mixture ratio calculated by peak heights may vary significantly from quantification results due to stochastic effects. Quantification results from two person mixture samples which fall below 0.2ng/µl and above the suggested amplification cutoff, 41pg, can be expected to produce significant dropout of the minor contributor at a higher ratio of total to male DNA than 45:1. Further sensitivity studies would be required to establish an appropriate cutoff for mixtures amplified at lower quantities.

**Amplification Cutoff Validation** 

#### Conclusion

Using the data obtained in this study, it is recommended to modify laboratory standard operating procedures to reflect a change in overall sample processing. If a sample quantifies at a value less than 4.1pg/µl using Plexor® HY as the quantitation kit, it may be stopped from further processing based on the assumption that the profile will exhibit significant dropout and/or loss of data.

For sexual assault samples with a sufficient quantity of total DNA to amplify an optimal target (≥500pg) where a probative, minor contributor male is expected, a quantification ratio of total DNA to male DNA greater than 45:1 is not expected to yield enough of a minor profile to be used for comparison. For mixture samples without a sufficient quantity to amplify an optimal target (<500pg), it is recommended to amplify as much quantity as possible regardless of the ratio indicated by Plexor HY unless other samples in the case have better potential for full results (higher amplification target and/or lower ratio).

Because the quantitation step will be used to stop samples from further processing, it is critical that as much consistency among analysts and kit lot numbers be maintained. If an analyst's standard curve does not fit within the validated range, it is possible the sample may quantify below the amplifiable range but be capable of producing full results. All samples should be re-quantified. Also, if a quantitation kit does not pass QC, a sensitivity study should be conducted and staff notified if a change in amplification cutoff is needed.